Perceived continuity and pitch shifts for complex tones with unresolved harmonics.
نویسندگان
چکیده
Brief complex tone bursts with fundamental frequencies (F0s) of 100, 125, 166.7, and 250 Hz were bandpass filtered between the 22nd and 30th harmonics, to produce waveforms with five regularly occurring envelope peaks ("pitch pulses") that evoked pitches associated with their repetition period. Two such tone bursts were presented sequentially and separated by a silent interval of two periods (2/F0). When the relative phases of the two bursts were varied, such that the interpulse interval (IPI) between the last pulse of the first burst and the first pulse of the second burst was varied, the pitch of the whole sequence was little affected. This is consistent with previous results suggesting that the pitch integration window may be "reset" by a discontinuity. However, when the interval between the two bursts was filled with a noise with the same spectral envelope as the complex, variations in IPI had substantial effects on the pitch of the sequence. It is suggested that the presence of the noise causes the two tones bursts to appear continuous, hence, resetting does not occur, and the pitch mechanism is sensitive to the phase discontinuity across the silent interval.
منابع مشابه
Spatio-temporal representation of the pitch of complex tones in the auditory nerve
Although pitch is a fundamental auditory percept that plays an important role in music, speech, and auditory scene analysis, the neural codes and mechanisms for pitch perception are still poorly understood. In a previous study (Cedolin and Delgutte 2005), we tested the effectiveness of two classic representations for the pitch of harmonic complex tones at the level of the auditory nerve (AN) in...
متن کاملRepresentations of the Pitch of Complex Tones in the Auditory Nerve
Previous studies of the coding of the pitch of complex tones in the auditory nerve and cochlear nucleus have documented a robust temporal representation based on interspike interval distributions (Cariani and Delgutte, 1996; Rhode, 1995; Palmer and Winter, 1993). However, these studies have largely neglected possible rateplace cues to pitch available when individual harmonics are resolved by th...
متن کاملNeural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch.
1. The neural correlates of low pitches produced by complex tones were studied by analyzing temporal discharge patterns of auditory nerve fibers in Dial-anesthetized cats. In the previous paper it was observed that, for harmonic stimuli, the most frequent interspike interval present in the population of auditory nerve fibers always corresponded to the perceived pitch (predominant interval hypot...
متن کاملEvidence against an effect of grouping by spectral regularity on the perception of virtual pitch.
Two experiments investigated the role of the regularity of the frequency spacing of harmonics, as a separate factor from harmonicity, on the perception of the virtual pitch of a harmonic series. The first experiment compared the shifts produced by mistuning the 3rd, 4th, and 5th harmonics in the pitch of two harmonic series: the odd-H and the all-H tones. The odd-H tone contained odd harmonics ...
متن کاملCan temporal fine structure represent the fundamental frequency of unresolved harmonics?
At least two modes of pitch perception exist: in one, the fundamental frequency (F0) of harmonic complex tones is estimated using the temporal fine structure (TFS) of individual low-order resolved harmonics; in the other, F0 is derived from the temporal envelope of high-order unresolved harmonics that interact in the auditory periphery. Pitch is typically more accurate in the former than in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 128 4 شماره
صفحات -
تاریخ انتشار 2010